Amniotic Fluid Stem Cells with Low γ-Interferon Response Showed Behavioral Improvement in Parkinsonism Rat Model

نویسندگان

  • Yu-Jen Chang
  • Tsung-Yen Ho
  • Mei-Ling Wu
  • Shiaw-Min Hwang
  • Tzyy-Wen Chiou
  • Ming-Song Tsai
چکیده

Amniotic fluid stem cells (AFSCs) are multipotent stem cells that may be used in transplantation medicine. In this study, AFSCs established from amniocentesis were characterized on the basis of surface marker expression and differentiation potential. To further investigate the properties of AFSCs for translational applications, we examined the cell surface expression of human leukocyte antigens (HLA) of these cells and estimated the therapeutic effect of AFSCs in parkinsonian rats. The expression profiles of HLA-II and transcription factors were compared between AFSCs and bone marrow-derived mesenchymal stem cells (BMMSCs) following treatment with γ-IFN. We found that stimulation of AFSCs with γ-IFN prompted only a slight increase in the expression of HLA-Ia and HLA-E, and the rare HLA-II expression could also be observed in most AFSCs samples. Consequently, the expression of CIITA and RFX5 was weakly induced by γ-IFN stimulation of AFSCs compared to that of BMMSCs. In the transplantation test, Sprague Dawley rats with 6-hydroxydopamine lesioning of the substantia nigra were used as a parkinsonian-animal model. Following the negative γ-IFN response AFSCs injection, apomorphine-induced rotation was reduced by 75% in AFSCs engrafted parkinsonian rats but was increased by 53% in the control group after 12-weeks post-transplantation. The implanted AFSCs were viable, and were able to migrate into the brain's circuitry and express specific proteins of dopamine neurons, such as tyrosine hydroxylase and dopamine transporter. In conclusion, the relative insensitivity AFSCs to γ-IFN implies that AFSCs might have immune-tolerance in γ-IFN inflammatory conditions. Furthermore, the effective improvement of AFSCs transplantation for apomorphine-induced rotation paves the way for the clinical application in parkinsonian therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of dopaminergic neuronal-like cells from CD44+ human amniotic fluids that are ameliorative to behavioral recovery in a Parkinson's disease rat model.

Parkinson's disease (PD) is a common age-associated neurodegenerative disorder. To date, stem cell transplantation therapy has been developed to replace lost or damaged neural cells in PD patients, in whom dopaminergic neuron cells are lost. Here, we show that CD44+ human amniotic fluid cells (HuAFCs) can be induced to become functional dopaminergic neuronal-like cells in vitro. Furthermore, wh...

متن کامل

Human Amniotic Fluid Stem Cells: General Characteristics and Potential Therapeutic Applications

Introduction: Amniotic fluid contains a mixture of different cell types sloughed from the fetal skin, respiratory, alimentary and urogenital tracts, as well as the amnion membrane. As amniotic fluid develops prior to the process of gastrulation, many cells found in its heterogeneous population do not undergo lineage specialization. Therefore, amniotic fluid-derived mesenchymal stem cells (AF-MS...

متن کامل

High neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids

Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic...

متن کامل

Partial Improvement of Spatial Memory Damages by Bone Marrow Mesenchymal Stem Cells Transplantation Following Trimethyltin Chloride Administration in the Rat CA1

Introduction: Trimethyltin Chloride (TMT) is a neurotoxin that can kill neurons in the nervous system and activate astrocytes. This neurotoxin mainly damages the hippocampal neurons. After TMT injection, behavioral changes such as aggression and hyperactivity have been reported in animals along with impaired spatial and learning memory. Hence, TMT is a suitable tool for an experimental model of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013